
Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Expose NVIDIA’s performance counters to the
userspace for NV50/Tesla

Nouveau project

Samuel Pitoiset

Supervised by Martin Peres

GSoC student 2013 & 2014

October 8, 2014

1 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction
What are performance counters ?
NVIDIA’s performance counters
Nouveau’s performance counters
Proposal

2 PCOUNTER

3 Reverse engineering

4 Kernel interface

5 Perfmon APIs

6 Conclusion 2 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

What are performance counters ?

Performance counters
are blocks in modern processors that monitor their activity;
count low-level hardware events such as cache hit/misses.

Why performance counters are used ?
To analyze the bottlenecks of 3D and GPGPU applications;
To dynamically adjust the performance level of the GPU.

3 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

NVIDIA’s performance counters

Two kind of counters exposed by NVIDIA
compute counters for GPGPU applications:

exposed through CUPTI (CUDA Profiling Tools Interface).
graphics counters for 3D applications:

exposed through PerfKit, only on Windows...

4 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Nouveau’s performance counters

Current status
compute counters support for Fermi and Kepler;
exposed to the userspace through Gallium-HUD;
Kepler support by Christoph Bumiller (calim);
Fermi support by myself (GSoC 2013).

but many performance counters left to be exposed...

5 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Proposal

Off-season work
reverse engineered graphics counters using PerfKit on W7.

Google Summer of Code 2014

expose NVIDIA’s graphics counters for Tesla (NV50):
kernel interface in Nouveau DRM;
mesa & GL_AMD_performance_monitor;
nouveau-perfkit.

Benefits to the community
help developers to find bottlenecks in their 3D applications.

6 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction

2 PCOUNTER
The performance counters engine
Overview of a domain
Other counters ?

3 Reverse engineering

4 Kernel interface

5 Perfmon APIs

6 Conclusion
7 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

The performance counters engine

PCOUNTER: General overview
contains most of the performance counters;
is made of several identical hardware units called domains;
each domain has 256 input signals;
input signals are from all over the card (global counters);
performance counters are tied to a clock domain.

Figure : Example of a simple performance counter

8 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Overview of a domain

Cycles

Events

Macro

signal

Clock X

XTruth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Signals

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

/
256

/
256

/
256

/
256

/
256

Figure : Schematic view of a domain from PCOUNTER

9 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Other counters ?

Per-context counters (or MP-counters)

per-channel/process counters in PGRAPH;
more accurate than global counters;
same logic as PCOUNTER;
share some in-engine multiplexers with PCOUNTER;
currently require running an OpenCL kernel to read them.

10 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Counters - Which signals are known ?

Per-context counters (MP)

all GPGPU signals for Tesla, Fermi and Kepler reversed;
reverse engineered by Christoph Bumiller and myself.

Global counters (PCOUNTER)

very chipset-dependant;
more than 200 signals reverse engineered on NV50/Tesla;
work done by Marcin Kościelnicki (mwk) and myself.

What about graphics counters ?
almost-all 3D signals exported by PerfKit on NV50 reversed;
some per-context counters still need to be reversed.

11 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction

2 PCOUNTER

3 Reverse engineering
Windows... Kill me now!
How does it work?
OGL Performance Experiments

4 Kernel interface

5 Perfmon APIs

6 Conclusion
12 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Reverse engineering of graphics counters

Reverse engineering on Windows...
3D signals are exposed through PerfKit, only on Windows;
can’t use envytools (a collection of NVIDIA-related tools);
... because libpciaccess doesn’t work on Windows!

Bring it on!

added libpciaccess support for Windows/Cygwin;
envytools can now be used on Windows;
no MMIO traces and no valgrind-mmt...;
let’s start the reverse engineering process. :)

13 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

How does it work?

Reverse engineering process
1 configure the hardware counters with PerfKit on W7;
2 dump the configuration with some tools of envytools:

but some multiplexers are very difficult to find!
3 regenerate the same result by polling the counters on W7;
4 reproduce the configuration on Linux/Nouveau;
5 go to step 1...

around 50 graphics counters exposed on Tesla family;
and 14 different chipsets (ouch)!

OGL Performance Experiments

a modified version of OGLPerfHarness (PerfKit);
to help in the reverse engineering process.

14 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

OGL Performance Experiments

Figure : Screenshot of OGLPerfHarness (based on PerfKit) on W7
15 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction

2 PCOUNTER

3 Reverse engineering

4 Kernel interface
Introduction
Synchronization
Overview from Mesa’s PoV
Overview from the GPU’s PoV

5 Perfmon APIs

6 Conclusion 16 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Introduction

Why is a kernel interface needed ?
because global counters have to be programmed via MMIO:

only root or the kernel can write to them.

What the interface has to do ?
set up the configuration of counters;
poll counters;
expose counter’s data to the userspace (readout).

17 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Synchronization

Synchronizing operations
CPU: ioctls;
GPU: software methods.

Software method
command added to the command stream of the GPU context;
upon reaching the command, the GPU is paused;
the CPU gets an IRQ and handles the command.

18 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Overview from Mesa’s PoV

Nouveau

Kernel space

Mesa

User space

Command
stream time

Notifier BO
(ring buffer)

6

1 2

543

7

1 alloc counter object

2 get object's handle

3

4

5

6

7

begin monitoring

end monitoring

get counters' value

kernel writes data 

mesa reads data

19 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Overview from the GPU’s PoV

Nouveau

Kernel space

Command
stream time

Notifier BO
(ring buffer)

6

1

4

Hardware

GPU

5
3

1 begin monitoring

2 configure counters

3

4

5

6

7

reset counters' value

end monitoring

polling counters

get counters' value

write fence ID

2

7

8 copy counters' value

8

20 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

How to synchronize different queries ?

A detailed look at the ring buffer
mesa sends a query ID to read out results;
this sequence number is written at the offset 0:

easy to check if the result is in the ring buffer.
the ring buffer queues up 8 queries/frames (like the HUD):

avoid stalling the command submission.

Figure : Schematic view of the ring buffer

21 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction

2 PCOUNTER

3 Reverse engineering

4 Kernel interface

5 Perfmon APIs

6 Conclusion

22 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Perfmon APIs

Performance counters APIs
Proprietary: Perfkit, CUPTI, GL_AMD_perfmon;
OSS: Gallium HUD only.

GL_AMD_performance_monitor

patches available for nvc0, svga, freedreno and radeon drivers;
my patch set (v4) is pending on mesa-dev:

initial work by Christoph Bumiller.

nouveau-perfkit

a Linux/Nouveau version of NVIDIA PerfKit;
built on top of mesa (Gallium state tracker like vdpau);
work in progress.

23 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

General overview

Nouveau

DRM

Hardware

GPU

GPU-specific device drivers

Kernel space

Gallium

Mesa 3D

GL_AMD_perfmon Nouveau-perfkit

State Trackers
OpenGL

24 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Summary

1 Introduction

2 PCOUNTER

3 Reverse engineering

4 Kernel interface

5 Perfmon APIs

6 Conclusion
Questions & Discussions

25 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Conclusion

Current status
all 3D global counters on Tesla (NV50) reversed;
kernel interface & mesa implementation is on the way:

hope to see the code in Linux 3.20.

GL_AMD_performance_monitor’s patches are pending.

TODO list
implement nouveau-perfkit as a Gallium state tracker;
reverse engineer more performance counter signals:

graphics counters support for Fermi and Kepler.

all the work which can be done around performance counters.

26 / 27



Introduction PCOUNTER Reverse engineering Kernel interface Perfmon APIs Conclusion

Questions & Discussions

Questions & Discussions

And for more information you can take a look at my blog
http://hakzsam.wordpress.com

27 / 27

http://hakzsam.wordpress.com

	Introduction
	What are performance counters ?
	NVIDIA's performance counters
	Nouveau's performance counters
	Proposal

	PCOUNTER
	The performance counters engine
	Overview of a domain
	Other counters ?

	Reverse engineering
	Windows... Kill me now!
	How does it work?
	OGL Performance Experiments

	Kernel interface
	Introduction
	Synchronization
	Overview from Mesa's PoV
	Overview from the GPU's PoV

	Perfmon APIs
	Conclusion
	Questions & Discussions


