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What are performance counters ?

Performance counters
are blocks in modern processors that monitor their activity;
count low-level hardware events such as cache hit/misses.

Why performance counters are used ?
To analyze the bottlenecks of 3D and GPGPU applications;
To dynamically adjust the performance level of the GPU.
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NVIDIA’s performance counters

Two kind of counters exposed by NVIDIA
compute counters for GPGPU applications:

exposed through CUPTI (CUDA Profiling Tools Interface).
graphics counters for 3D applications:

exposed through PerfKit, only on Windows...
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Nouveau’s performance counters

Current status
compute counters support for Fermi and Kepler;
exposed to the userspace through Gallium-HUD;
Kepler support by Christoph Bumiller (calim);
Fermi support by myself (GSoC 2013).

but many performance counters left to be exposed...
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Proposal

Off-season work
reverse engineered graphics counters using PerfKit on W7.

Google Summer of Code 2014

expose NVIDIA’s graphics counters for Tesla (NV50):
kernel interface in Nouveau DRM;
mesa & GL_AMD_performance_monitor;
nouveau-perfkit.

Benefits to the community
help developers to find bottlenecks in their 3D applications.
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The performance counters engine

PCOUNTER: General overview
contains most of the performance counters;
is made of several identical hardware units called domains;
each domain has 256 input signals;
input signals are from all over the card (global counters);
performance counters are tied to a clock domain.

Figure : Example of a simple performance counter
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Overview of a domain
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Figure : Schematic view of a domain from PCOUNTER
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Other counters ?

Per-context counters (or MP-counters)

per-channel/process counters in PGRAPH;
more accurate than global counters;
same logic as PCOUNTER;
share some in-engine multiplexers with PCOUNTER;
currently require running an OpenCL kernel to read them.
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Counters - Which signals are known ?

Per-context counters (MP)

all GPGPU signals for Tesla, Fermi and Kepler reversed;
reverse engineered by Christoph Bumiller and myself.

Global counters (PCOUNTER)

very chipset-dependant;
more than 200 signals reverse engineered on NV50/Tesla;
work done by Marcin Kościelnicki (mwk) and myself.

What about graphics counters ?
almost-all 3D signals exported by PerfKit on NV50 reversed;
some per-context counters still need to be reversed.
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Reverse engineering of graphics counters

Reverse engineering on Windows...
3D signals are exposed through PerfKit, only on Windows;
can’t use envytools (a collection of NVIDIA-related tools);
... because libpciaccess doesn’t work on Windows!

Bring it on!

added libpciaccess support for Windows/Cygwin;
envytools can now be used on Windows;
no MMIO traces and no valgrind-mmt...;
let’s start the reverse engineering process. :)
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How does it work?

Reverse engineering process
1 configure the hardware counters with PerfKit on W7;
2 dump the configuration with some tools of envytools:

but some multiplexers are very difficult to find!
3 regenerate the same result by polling the counters on W7;
4 reproduce the configuration on Linux/Nouveau;
5 go to step 1...

around 50 graphics counters exposed on Tesla family;
and 14 different chipsets (ouch)!

OGL Performance Experiments

a modified version of OGLPerfHarness (PerfKit);
to help in the reverse engineering process.
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OGL Performance Experiments

Figure : Screenshot of OGLPerfHarness (based on PerfKit) on W7
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Introduction

Why is a kernel interface needed ?
because global counters have to be programmed via MMIO:

only root or the kernel can write to them.

What the interface has to do ?
set up the configuration of counters;
poll counters;
expose counter’s data to the userspace (readout).
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Synchronization

Synchronizing operations
CPU: ioctls;
GPU: software methods.

Software method
command added to the command stream of the GPU context;
upon reaching the command, the GPU is paused;
the CPU gets an IRQ and handles the command.
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Overview from Mesa’s PoV
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Overview from the GPU’s PoV
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How to synchronize different queries ?

A detailed look at the ring buffer
mesa sends a query ID to read out results;
this sequence number is written at the offset 0:

easy to check if the result is in the ring buffer.
the ring buffer queues up 8 queries/frames (like the HUD):

avoid stalling the command submission.

Figure : Schematic view of the ring buffer
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Perfmon APIs

Performance counters APIs
Proprietary: Perfkit, CUPTI, GL_AMD_perfmon;
OSS: Gallium HUD only.

GL_AMD_performance_monitor

patches available for nvc0, svga, freedreno and radeon drivers;
my patch set (v4) is pending on mesa-dev:

initial work by Christoph Bumiller.

nouveau-perfkit

a Linux/Nouveau version of NVIDIA PerfKit;
built on top of mesa (Gallium state tracker like vdpau);
work in progress.
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General overview
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Conclusion

Current status
all 3D global counters on Tesla (NV50) reversed;
kernel interface & mesa implementation is on the way:

hope to see the code in Linux 3.20.

GL_AMD_performance_monitor’s patches are pending.

TODO list
implement nouveau-perfkit as a Gallium state tracker;
reverse engineer more performance counter signals:

graphics counters support for Fermi and Kepler.

all the work which can be done around performance counters.
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Questions & Discussions

Questions & Discussions

And for more information you can take a look at my blog
http://hakzsam.wordpress.com
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